Genetic modulation of soluble Aβ rescues cognitive and synaptic impairment in a mouse model of Alzheimer's disease.

نویسندگان

  • Stephanie W Fowler
  • Angie C A Chiang
  • Ricky R Savjani
  • Megan E Larson
  • Mathew A Sherman
  • Dorothy R Schuler
  • John R Cirrito
  • Sylvain E Lesné
  • Joanna L Jankowsky
چکیده

An unresolved debate in Alzheimer's disease (AD) is whether amyloid plaques are pathogenic, causing overt physical disruption of neural circuits, or protective, sequestering soluble forms of amyloid-β (Aβ) that initiate synaptic damage and cognitive decline. Few animal models of AD have been capable of isolating the relative contribution made by soluble and insoluble forms of Aβ to the behavioral symptoms and biochemical consequences of the disease. Here we use a controllable transgenic mouse model expressing a mutant form of amyloid precursor protein (APP) to distinguish the impact of soluble Aβ from that of deposited amyloid on cognitive function and synaptic structure. Rapid inhibition of transgenic APP modulated the production of Aβ without affecting pre-existing amyloid deposits and restored cognitive performance to the level of healthy controls in Morris water maze, radial arm water maze, and fear conditioning. Selective reduction of Aβ with a γ-secretase inhibitor provided similar improvement, suggesting that transgene suppression restored cognition, at least in part by lowering Aβ. Cognitive improvement coincided with reduced levels of synaptotoxic Aβ oligomers, greater synaptic density surrounding amyloid plaques, and increased expression of presynaptic and postsynaptic markers. Together these findings indicate that transient Aβ species underlie much of the cognitive and synaptic deficits observed in this model and demonstrate that significant functional and structural recovery can be attained without removing deposited amyloid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PKC ε activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer's disease transgenic mice.

Among the pathologic hallmarks of Alzheimer's disease (AD) neurodegeneration, only synaptic loss in the brains of AD patients closely correlates with the degree of dementia in vivo. Here, we describe a molecular basis for this AD loss of synapses: pathological reduction of synaptogenic PKC isozymes and their downstream synaptogenic substrates, such as brain-derived neurotrophic factor. This red...

متن کامل

Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease.

Glial glutamate transporter, GLT-1, is the major Na(+)-driven glutamate transporter to control glutamate levels in synapses and prevent glutamate-induced excitotoxicity implicated in neurodegenerative disorders including Alzheimer's disease (AD). Significant functional loss of GLT-1 has been reported to correlate well with synaptic degeneration and severity of cognitive impairment among AD pati...

متن کامل

Soluble aβ promotes wild-type tau pathology in vivo.

Growing evidence suggests that soluble Aβ species can drive Alzheimer disease (AD) pathogenesis by inducing a cascade of events including tau hyperphosphorylation, proteasome impairment, and synaptic dysfunction. However, these studies have relied largely on in vitro approaches to examine the role of soluble Aβ in AD. In particular, it remains unknown whether soluble Aβ oligomers can facilitate...

متن کامل

Synaptic deficits are rescued in the p25/Cdk5 model of neurodegeneration by the reduction of β-secretase (BACE1).

Alzheimer's disease (AD) is the most common cause of dementia, and is characterized by memory loss and cognitive decline, as well as amyloid β (Aβ) accumulation, and progressive neurodegeneration. Cdk5 is a proline-directed serine/threonine kinase whose activation by the p25 protein has been implicated in a number of neurodegenerative disorders. The CK-p25 inducible mouse model exhibits progres...

متن کامل

Soluble α-synuclein is a novel modulator of Alzheimer's disease pathophysiology.

Recent evidence has emphasized soluble species of amyloid-β (Aβ) and tau as pathogenic effectors in Alzheimer's disease (AD). Despite the fact that Aβ, tau, and α-synuclein (αSyn) can promote each other's aggregation, the potential contribution of soluble αSyn to AD pathogenesis is unknown. Here, we found an approximate twofold increase over controls in soluble αSyn levels in AD brains in the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 34 23  شماره 

صفحات  -

تاریخ انتشار 2014